sábado, 31 de dezembro de 2016

Inversão de ângulos formados por retas e circunferências

Nesta postagem veremos que seja $m$ e $n$ duas retas, ou duas circunferências, ou uma reta e uma circunferência que se intersetam num ponto $P$ formando um ângulo $\theta$. As inversões, $m'$ e $n'$, respectivamente de $m$ e $n$, em relação a uma circunferência $\alpha$, formam um ângulo congruente a $\theta$ no ponto $P'$, inverso do ponto $P$.

quarta-feira, 12 de outubro de 2016

Inversão de circunferência em relação a outra circunferência

Veremos que a inversão de uma circunferência em relação a outra pode ser uma circunferência que não passa pelo centro de inversão ou uma reta que não passa pelo centro de inversão. Em uma caso particular, mostraremos a inversão de uma circunferência ortogonal à circunferência de inversão.

sábado, 17 de setembro de 2016

Inversão de reta em relação à circunferência

Estudamos na escola que há três posições relativas entre uma reta e uma circunferência no plano:
  • A reta é externa à circunferência;
  • A reta é tangente à circunferência; e
  • A reta é secante à circunferência 
Em se tratando de inversão na circunferência, há mais uma posição entre reta e circunferência que devemos considerar:
  • A reta passa pelo centro de inversão
Pois, apenas nesta última, um ponto pertencente à reta tem seu inverso, em relação à circunferência de inversão, pertencente a mesma reta.

quarta-feira, 24 de agosto de 2016

H-retas perpendiculares

Nesta postagem, veremos uma construção de uma h-reta $t$ determinada por um de seus h-pontos, denominado por $P$, e uma de suas perpendiculares, denominada $r$. Para esta construção, consideraremos as seguintes situações:

  1. h-reta $r$ não passa por $O$ e $P$ é tal que a h-reta $t$ não passa por $O$;
  2. h-reta $r$ não passa por $O$ e $P$ é tal que a h-reta $t$ passa por $O$;
  3. h-reta $r$ passa por $O$ e $P$ é tal que a h-reta $t$ não passa por $O$; e
  4. h-reta $r$ passa por $O$ e $P$ é tal que a h-reta $t$ passa por $O$.

sábado, 30 de julho de 2016

Ângulo no h-plano

No h-plano, vamos considerar duas h-retas que se intersetam num h-ponto $A$, a medida do ângulo formado por essas h-retas no h-ponto $A$ obedecerá as seguintes condições:

sexta-feira, 29 de julho de 2016

Construção de h-reta

Atualizada em 30/07/2016 as 13:41

A geometria hiperbólica satisfaz os quatro primeiros postulados de Euclides. Deste modo, dois h-pontos determinam uma única h-reta. Ainda é possível determinar uma h-reta conhecendo um dos seus h-pontos e um dos pontos ideais ou conhecendo os dois pontos ideais.

Nesta postagem, veremos construções de h-retas determinadas por dois h-pontos, por um h-ponto e um ponto ideal e por dois pontos ideais, auxiliados pelo software Geogebra.

terça-feira, 26 de julho de 2016

Circunferências ortogonais

Através da construção de circunferências ortogonais, poderemos determinar h-retas e realizar transformações geométricas no h-plano. Veremos teoremas importantes que fundamentam a construção de uma circunferência ortogonal a uma circunferência dada.

sábado, 16 de julho de 2016

Inversão de um ponto qualquer do plano euclidiano em relação a uma circunferência

Considere os pontos distintos $O, P$ e $R$ e uma circunferência $\alpha$ de centro $O$ e raio $r=\overline{OR}\neq 0$ no plano euclidiano.

A construção a seguir, feita no Geogebra, é para determinar a inversão do ponto $P$ em relação a circunferência $\alpha$ independente do ponto ser interno ou externo à circunferência de inversão.

quinta-feira, 14 de julho de 2016

quarta-feira, 13 de julho de 2016

Inversão de ponto interno à circunferência $\alpha$

Vamos determinar, por meio de construções geométricas, o ponto inverso $P'$ do ponto $P$ que é interno à circunferência $\alpha$ de centro $O$ e raio $r$.

Inversão na circunferência


A inversão na circunferência é uma transformação que associa um ponto interno de uma circunferência a um único ponto externo da mesma circunferência. Esta transformação é importante para realizar construções no h-plano tais como h-retas e estabelecer a reflexão de uma h-reta.


Nesta postagem, definiremos pontos inversos, ponto ideal, plano de inversão e inversão na circunferência e veremos que a inversão na circunferência é uma relação biunívoca.

domingo, 10 de julho de 2016

Propriedades da Métrica do Disco de Poincaré

Considerando três h-pontos $A$, $B$ e $C$, a distância entre dois h-pontos conserva as seguintes propriedades:

$\left. P_1 \right)$ $d_h(A,B)\geq 0$, sendo que $d_h(A,B)=0\Leftrightarrow A=B$.

domingo, 3 de julho de 2016

Métrica no Disco de Poincaré

OS PROBLEMAS DA MÉTRICA EUCLIDIANA NO H-PLANO DO DISCO DE POINCARÉ

Na geometria hiperbólica, o plano é uma região ilimitada, porém o plano hiperbólico do Disco de Poincaré é uma região restrita no plano euclidiano, se determinássemos a distância de dois h-pontos da mesma forma que determinamos a distância de dois pontos em $\mathbb{E}$, o maior comprimento seria menor que $2\cdot r$ (diâmetro de $\alpha$).

sábado, 25 de junho de 2016

O Disco de Poincaré: ponto, reta e plano

Jules Henri Poincaré (1854-1912) era Engenheiro de Minas pela École Polytechnique (1875), trabalhou no Departamento de Minas até falecer. Foi Doutor em Ciências pela Universidade de Paris (1879), onde adquiriu Cátedra, e foi professor da Universidade de Sorbone. Ao contrário de outros famosos matemáticos, Poincaré se revelou um gênio na idade adulta e foi prova viva que habilidade para os números não é um pré-requisito para ser um grande matemático, pois, Poincaré não tinha habilidade para cálculos laboriosos mas é considerado um universalista em Matemática. 

O modelo de Disco de Poincaré para Geometria Hiperbólica foi criado entre 1882 e 1887. Ele faz uso da Geometria Euclidiana, mas utilizando os postulados da Geometria Hiperbólica, assim, se houver alguma inconsistência, então, também há inconsistência na Geometria Euclidiana.

sexta-feira, 24 de junho de 2016

Alguns fatos históricos da Geometria Hiperbólica

Última atualização em 29/06/2016 as 19h52

INTRODUÇÃO

Esta postagem busca apresenta alguns fatos que considero marcantes para o surgimento da Geometria Hiperbólica, desta forma, não faremos um profundo estudo da origem das geometria não-euclidianas e algumas informações históricas serão ocultadas, mas no final colocamos as referências consultadas para o leitor que desejar ir além do que está nesta postagem.